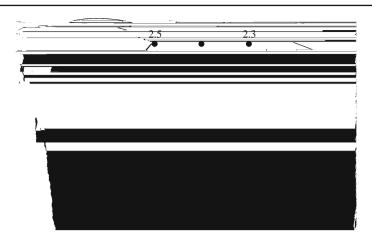
Recall that n+1 is a conformal mapping from the union of interstices bounded by circles of H_{n+1} to the union of interstices bounded by circles of H_{n+1} . We let $G_n = 0$ the

Denote by $_0=\{|z|=3/(2n)\}$. The smallest and largest circles mutually tangent to $M_n(c_0)$ and $M_n(_0)$ have radii

1



Let us write $G_n = K_n \cdot F_n : P \quad W$, where $F_n : P \quad P$ is the quasiconformal mapping with Beltrami differential

5 Proof of the lemmas

$$M_{D,j}|_{I_{D,j}} = n+1|_{I_{D,j}}$$

where $\,$ and $\,^-$ are the conformal homeomorphisms. The quasiconformal homeomorphism \overline{F}_n

where K(x + iy) is the maximal dilatation of \widetilde{F} , and J(x + iy) is the Jacobi of

From the Schwarz inequality we get

$$| 1 + 2 2 |^{2}$$

$$| 1 + 2 1 |^{2} \cdot \int_{0}^{1} \int_{0}^{1} K(x + t(1 + 2 1)) dt dx \cdot \int_{0}^{1} \int_{0}^{1}$$