TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 365, Number 12, December 2013, Pages 6517–6541 S 0002-9947(2013)05892-8 Article electronically published on May 30, 2013

ON THE TEICHMÜLLER THEORY OF CIRCLE PATTERNS

ZHDNGNE plate of intersecting circles
P(.(.)Tj .0602 -.012 TD (.)Tj .0602 -.0241 TD (.)Tj .0482 -.0241 TD (.)Tj .0602 -.012 TD (.)Tj .0602 -.0241 TD (.)Tj .06

Note the Teichmüller space of a 3-sided polygon consists of a single point. Hence we have the following corollary.

Corollary 1.4. Let G = (

On the other hand,

 dim_{R}

ON THE TEICHM

ON THE TEICHM

Proof.

Let F

Let A_j (resp. \tilde{A}_j), 1 j

ON THE TEICHM"

Obviously (G_n, n) satisfies conditions (i), (ii) and (iii) in Section.1. The result in the previous section implies that there is a circle pattern P_n in $\hat{\mathbb{C}}$ realizing (G_n, n) . It is unique up to Mobiüs transformations. We partially normalize this circle pattern such that the disk associated with v_1 is $D(v_1) = \hat{\mathbb{C}} \setminus \{/z/<1\}$

and hence by logarithmic di $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$