XIAOJUN HUANG AND JINSONG LIU

ABSTRACT. In this paper we consider the characterization problem of convex polyhedrons in the three dimensional hyperbolic space H^3 . Consequently we can give a characterization of circle patterns in the Riemann sphere with *dihedral angle* 0 < . That is, for any circle pattern on \hat{C} , its quasiconformal deformation space can be naturally identified with the product of the Teichm⁻⁻

XIAOJUN HUANG AND JINSONG LIU

Theorem 0.7. Assume that G

Theorem 1.1. A metric space (Q; g) is the polar image of a finite volume polyhedron if and only if it satisfies the following conditions:

2. CIRCLE PATTERNS

For any 0

Then Theorem 0.4 and Theorem 0.5 imply the following two results. **Theorem 2.1**.

conditions 1 6 in Section 0. Obviously it satisfies the conditions 1; 2; 5 in Section

XIAOJUN HUANG AND JINSONG LIU

Lay down a regular hexagonal packing of circles in C, say each of radius 1=*n*. 2JUN HUponent4 0 TD;(=)] الله 14 9:06 (2017) (م) المجمع (2017) (م) المجمع (2017) (م) المجمع (2017) (م) المحافظ (2017) (م) ال

In general, it is hard to determine the combinatorial structure of the polyhedron $\tilde{\mathbf{P}}_n$

Proof. Fix A_3 as the origin. We also assume that A_2 lies on the positive real axis. Let *z* denote the complex coordinate of A_1 . Hence *z*

angle $% \mathcal{S}_{1:S}^{2}$. We will call these degenerate edges. Under the polar map $% \mathcal{S}_{1:S}^{2}$

Here $P(v_0)$ denote some boundary circle of I_1 such that $z_0 \ 2 \ @I_1 \ P(v_0)$. See [13, 5]. It is immediately that $(P^{\bullet}(v_{j_0})) = (P(v_{j_0})) < \mathbf{j}^{\bullet}(z_0)\mathbf{j} < 1$, which is a contradiction to (6). If z_0 is the tangent point of two adjacent circles $P(v_j)$; $P(v_{j+1})$, a simple calculation shows that

(8)
$$\mathbf{j}_{1}^{\mathbf{0}}(z_{0})\mathbf{j} = \frac{1}{(P(v_{j}))} + \frac{1}{(P(v_{j+1}))} - \frac{1}{(P^{\mathbf{0}}(v_{j}))} + \frac{1}{(P^{\mathbf{0}}(v_{j+1}))}^{-1}$$
:

XIAOJUN HUANG AND JINSONG LIU

cone pints c_{ν}